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AbstraeL ?he propagation of MHD waves in a one-dimensional atmosphere is con- 
sidered. For Alfvkn and acoustic waves the evolution equations arc transformed into 
onedimensional Dirac equations with a supersymmetric slmcture. For the case of 
isothermal and hydrostatic atmosphere rigorous speclral reSOlulionS for the MHD Dirac 
Hamiltonians are given. 

1. Introduction 

Studies of the propagation of MHD waves in the solar and stellar atmospheres is 
important for the understanding of the energy transfer and dissipation in the chro- 
mosphere and corona [l]. In [2] the second-order wave equation for linear Alfvkn 
waves h a s  been transformed into the form of a one-dimensional Klein-Gordon equa- 
tion with position dependent 'potential term'. We follow this idea and show that in 
the case of a vertical background magnetic field the first-order evolution equations 
for Alfven and acoustic waves may be transformed into ID Dirac equations with 
suitable potential terms. The obtained Dirac Hamiltonians display the structure of 
Witten's supersymmetric quantum mechanics [3,4]. Using the general results of the 
l l l ruly "L a L u L L L L - u " u Y L L L ~  upc.L.l,"L* La,", w c  a,gur. LIIdL L,, a gG,,Gr,L U > C  ,,IC ",,OIL 

Hamiltonian for the A l h h  waves possesses discrete spectrum while for the acoustic 
waves the spectrum contains a continuous part. In the last section the general theory 
is applied to a simple model of an isothermal hydrostatic atmosphere in constant 
gravity and magnetic fields. For this model two theorems give a full rigorous spectral 
characterization of the Dirac Hamiltonians for Alfvh and acoustic waves. These 
results give a rigorous meaning to the existing analytical solutions [7,8], clarify the 
problem of boundary conditions and observed resonant behaviour for A l h h  waves. 
In a forthcoming publication 191 the coupling between A l h h  and acoustic waves will 
be considered using quantum mechanical perturbation calculus and the astrophysical 
consequences of the obtained numerical results will be discussed. 

.I...,.-. ^I c. ...-- ,:^....:I,^ ,.-~ -...-- ", rc  L 1  ... ̂ "-".." .L"* :.. " ---- :.. ^^^^ .L^ n:-"- 

2. MHD waves in ID model atmosphere 

Consider a vertically stratified stationary plasma permeated by a stationaty magnetic 
field. The equilibrium configuration of the plasma is described by the density Po( z), 
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the pressure po(z) and the background magnetic and gravitation fields denoted by 
B = ( B Z ( z ) , B y ( z ) , B ~ ( z ) )  and g = g(z )e ,  respectively. At the moment we 
do not assume any additional conditions on po, p,, B, and g except for necessary 
smoothness. The variable z varies from 0 to +CO. 

Remurk. The condition V .  B = 0 implies in our m e  that E,  = constant. How- 
ever, the generalization to z-dependent E ,  might be useful for future applications. 

Starting from the basic MHD equations [l] one may easly derive the linear MHD 
equations for the z-  and time-dependent perturbations p ( r ;  t), ~ ( z ;  t ) ,  bz(z; t),  
b Y ( z ;  t) ,  ( b & ; i )  = 0) of the density, pressure and magnetic field respectively and 
for the ‘small’velocities uz(z ;  t ) ,  u,(z;  i), u z ( z ;  t ) .  

In the above equations /I is a constant magnetic permeability, (2.7) is a linear fUnC- 
tional constraint equation which may be derived from the equation of state for the 
plasma and which enables one to eliminate p from the system (2.2)-(2.6). 

3. Dirac equation for AlfvCn waves 

We assume now that B lies in the zz-plane, i.e. 

5 n n  = U .  (3.1) 
Y 

In this case the fields u y ,  by are decoupled from the others and form Alfvh waves 
satisfying the following equations: 
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We use transformations of fields and z similar to those in [2] and given by the 
formulae 

where 

(3.7) 

and u A ( z )  = B Z ( z ) ! , - m  is the Alfvtn velocity. Then the equations (3.2) and 
(3.3) are equivalent to 

where cA = v A ( 0 )  and 

(3.10) 

= (*I )  a< * 2  

i a  
2 aZ mA = mA(E) = ---I+). 

Introducing the notation: akr k = 1 , 2 , 3 , .  .. Pauli matrices p ,  = -ia, 
we can write (3.8) and (3.9) as a 1~ Dirac equation in the Hamiltonian form 

(3.11) 

(3.12) 

The Hamiltonian H A  should be essentialy self-adjoint on the Hilbert space H A  = 
L'[O,{,) @C2. Then the Cauchy problem (3.11) is well posed and the solutions 
are given in terms of the one-parameter unitary group exp(-i H,1) on H A .  Unitarity 
means here the preservation of the energy because 

- 
iimTr1+\112 = iC rlrri.l. / < . * \ P  1 ill, Tr1r.d\121 

"\ L I Y l \ \ ?  & / I  T IY2 \ '3 '  L I I  1 
Jo 

II - \*I11 

(3.13) 

In order to have a unique self-adjoint extention of HA we need proper boundary 
conditions. For this idealized model there are no reasons 10 impose any particular 
boundary conditions at E = E, ( z  = +w), hence the end point Em should be in the 
'limit-point' case [5,6] which means that the proper boundary conditions at ( = F, 
are automatically satisfied. Choosing other conditions we violate the self-adjoinmess 
of HA and hence the conservation of energy. For E = 0 ( z  = 0) we have two 
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boundary conditions which lead to a symmetric H A  and admit real solutions for (3.8) 
and (3.9) 

(3.14) 

In section 6 we shall illustrate these problems using an exactly solvable model. 
One should notice that in the case of a vertical background magnetic field (B, = 

B, = 0) we obtain two modes of Alfvh  waves (U= ,  bz) , (uy ,  by) with orthogonal 
polarizations which are independent and decoupled from (p ,uz ) .  One can describe 
them by a single Dirac equation starting with the complex valued fields b = b,  + 
i by ,u  = us -t ius. 

4. Dirac equation for acoustic waves 

Assuming that the magnetic field B is vertical, i.e 

B, = By = 0 (4.1) 

we have an independent acoustic mode ( p ,  U,) satisfying the equations 

a p  SP 
- 

P O X  - -- - aZ 
P = w,u,). 

We impose now a local isothermal condifion putting in place of (4.4) 

Po - 2 

Po 
P = - P  - V S P  

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where u S ( z )  = J p o ( r ) / p o ( z )  is a local sound velocity for isothermal perturbations. 
The above condition is a quite reasonable approximation at least for small frequences 
111. 

The next assumption is a local static equilibrium condition 

Moreover we assume that 

and hence we put the approximative simplifying condition 

(4.7) 

(4.8) 
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Now we introduce rescaled fields and height variable given by the formulae 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

Then after simple calculations we obtain from (4.2) and (4.3) using the conditions 
(4.5) and (4.8) the Dirac-like equation for +,, d2 

where cs = v,(O) and 

9 
cs vs 

ms = -. 

(4.13) 

(4.14) 

(4.15) 

Again equations (4.13) and (4.14) can be transformed into the Dirac equation in the 
Hamiltonian form 

a - a t@ = -iHs@ (4.16) 

with Q s ($ : ) ,p s  = -ian and 

H ,  = c s ( a l ~ s  + g2ms) .  (4.17) 

The boundary conditions at q = 0 ( z  = 0) are the same as in the previous section 
and the second end point q, = p x-I d z  should be in the limit-point case too 
(typicaiiy qm = mj. 

The conserved square of the norm is again t h e  energy (per unit surface) given by 
the expression 

(4.18) 



6080 R Alicki 

5. Supersymmetry and spectral properties 

It is an amazing fact that the supersymmetry may be found in the astrophysical models. 
Namely, the Dirac operator H D  = a l p +  uzm which appears in the previous sections 
possesses properties of the supercharge operator in the supersymmetric quantum 
mechanics [3,4]. Puting Q1 = H , / 2 ,  Qz = (uzp - ulm)/2 we obtain 

where 

(5.1) 
(5.2) 
(5.3) 

(5.4) 

is a Hamiltonian of the supersymmetric mechanics. 

differ by a single eigenvalue equal to zero only ('zero mode'). 
Due to the algebraic relations (5.1)-(5.3) the point spectra of H ,  and H -  may 

The SchrOdinger operators H ,  are Sturm-Liouville differential operators on 
fitven 

waves we expect in a generic situation that a = tm < cc (see section 6). Hence the 
spectrum of H ,  is discrete in 'all ordinary cases' [6]. Therefore in a generic case the 
model atmosphere acts like a finite cavity for AlMn waves. 

The situation is different for acoustic waves. spically, the sound velocity us( z )  
varies slowly with height and may be treated as a constant in the asymptotic region. 
Then asymptotically, the Dirac equation (4.16) describes a 'free particle'. Therefore 
the generic spectrum of H: is continuous with perhaps a finite number of low-lying 
eigenvalues. 

One should remember that in the physical situation the problem of boundary 
conditions is more complicated. For Alfvkn waves a more complete formulation of 
the wave equations gives a maximum phase velocity of c which modifies reflection 
and transmission properties for large z. For the acoustic wave nonlinear effects and 
damping become very important. 

i2i0, a j  Ihe of whic.n arr. vefy weii known i5,6j, in iiie ~ i i j e  

6. Hydrostatic isothermal atmosphere: an exactly soluble model 

The rigorous spectral analysis of the Dirac Hamiltonians H A ,  H, can be performed 
for a simple model of a hydrostatic isothermal atmosphere with uniform magnetic 
and gravity fields [1,7,8]. We assume that (4.6) holds and 

(6.1 ) 
a a 
az aZ 
- '0 = constant. (6.2) 

- g ( z )  = - - E Z ( z )  = E ,  = E ,  = 0 

Po 

Hence 

po(z )  = p o ( 0 ) e - z / A  p o ( z )  = p o ( 0 ) e - " / "  (6.3) 
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vs(z) = cs = @ 

The rescaled height variables are given by 

= 2 A ( 1  - €, = 2A 
q = z  

and the Dirac Hamiltonians are the following: 

a i  

(6.10) 
2 E [ O , C o ) .  

The operators (6.9) and (6.10) with b e d  boundary conditions possess unique 
self-adjoint extensions and their (generalized) eigenvalues and eigenfunctions can be 
exactly calculated. The rieorous results are formulated in the following theorems. We 
use a standard notation .I,, Y, for the Bessel functions of the first and the second 
kind respectively. 

Theorem 1. The operator H A  formally defined by (6.9) with two different boundary 
conditions at < = 0 

i a i  Gl(0j  = 0 

(b)  = 0 

possesses the corresponding two unique self-adjoint extensions HP,, H.!, characterized 
by the following spectral properties: 
( l a m e  spectrum of H Z  consists of the non-degenerate eigenvalues w,, n = 0, f l ,  

k2,. , . g k n  by jllR = ?,"CA/2A %,here A, are n!! zeros of :he tcxrins J,:X: 
ordered in such a way that A, = 0, A,+, > A,, A-, = -A,,. 

( 2 a p e  normalized eigenvectors of HP, are given by 
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( l b m e  spectrum of H i  consists of the non-degenerate eigenvalues w,, m = 
fl, f 2 , .  . . given by w, = A,c,/ZA where A, are all zeros of the func- 
tion Jo(A) ordered in such a way that A-, = -A,, A,,, > A,. 

(26)The normalized eigenvectors of H i  are given by 

Remurk. The zero mode (wo = 0) exists for the boundary condition ( U )  only while 
the case (b) corresponds to a 'spontaneous supersymmetry breaking'. 

Theorem 2. The operator H, given formally by (6.10) possesses two unique self- 
adjoint extensions H;,  H i  corresponding to the two different boundary conditions 

(4 4 , ( 0 )  = 0 
(b) 4?(0 )  = 0 
and characterized by the following spectral properties: 
(1) The spectrum of H ;  and H t  is continuous and consists of all real numbers w 

such that IwI 2 R = cs /A .  

The generalized eigenvectors may be chosen as: 
(2uyor H; 

(3) the density of states which appears in the eigenfunction expansion 

is given in both cases by 
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Roof of theorem 1. In order to prove theorem 1 we follow the standard Weyl and 
Titchmarsh approach to Sturm-Liouville opelators which can also be easily adapted 
to Dirac operators. We refer to the monographs of Richtmyer [5] and Eastham and 
Kalf [6] and give a brief sketch of the proof only. 

We Stan with the operator (6.9) and to avoid the complicated notation we intro- 
duce a dimensionless variable 

r = l - E / 2 A  r ~ ( O , l ]  (6.11) 

and the ‘dimensionless operator’ 

T = i a  * + U  1 (6.12) 1Sr 2 2 T ‘  

The crucial point is to find the solution of the generalized eigenvalue problem 

TQ = X Q  (6.13) 

1), +2( 1) ( r  = 1 corresponds to z = 0). 
Elimination of one of the functions, say 1C2, leads to a second order differential 

with X E C and for the specific values of 

equation for the other, namely 

(6.14j I , ,  , % 7  , . . I . \  1 ,  t [ A -  - (3/’tJF)@l = 0. 

For G2 we have 

I i l  
2 -  X 2 X  r 
l,!J - -1L; t --+1. (6.15) 

The solutions of (6.14) and (6.15) are the following 

G i ( ~ i  A) = f i [ A ( X ) J i ( X r )  + B(X)Yi(Xr)l 
G 2 ( r ;  A )  = ifi[A(X)J,,(Xr) C B(X)Y,(Xr)]. 

(6.16) 
(6.17) 

We search now for the non-trivial solutions + j ( . ; ~ i )  E Z2(0,1] , j  = 1,2.  Because 
9ii :Be o:hii hand 

A(*i) # 0 contradicts both boundaly conditions 
T , , , : ~ ~ ,  ’ I1{*lrJ is iiai iii LZ(0,:; h e x e  E(*,) = 0 in :his Gse. 

(6.18) 
(6.19) 

T h P T P f n r P .  !hP dPfiCiP!lCy indices of the corresponding symmetric nperators T“ ; T* 
are (0,O) and T” , Tb are essentially self-adjoint. 

We define now two special solutions of (6.12) 

(6.20) 
(6.21) 

(6.22) 
(6.23) 
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with the boundary conditions g l ( l ;  A )  = 1,gJl; A)  = 0. We have used the relation 

According to the general theory the spectra of T" and Tb (we use the same 
symbols for the unique self-adjoint extensions) are determined by the properties of 
the functions m,(A),mb(A) defined as 

J1(z)yo(.) - Y1(z)J0(.) = 2/7rx. 

I m A # O  j = 1 , 2 .  

Namely the function 

(6.24) 

(6.25) 

(6.26) 

appears in the eigenfunction expansion of the operator and formally dp(A)/dA is a 
'density of states'. In our case m,(A), mb( A )  are meromorphic functions with simple 
poles at the zeros A; or A: of the functions J1, Jo respectively. Hence the functions 
pa,  p b  are almost everywhere constant with jumps (all equal to 1 with the exception 
of the jump equal to 2 at A; = 0 for p a )  at the eigenvalues A;, A; respectively. 
The normalized eigenfunctions for T" , Tb are given by ((6.20) and (6.21)) or ((6.22) 
and (6.23)) with proper values of A;, A: respectively (one should remember factor 
Jz for A;). 

The statements of theorem 1. are obtained by the proper rescaling of the variable 
r H E and the operator T c H A .  O 

Proof of theorem 2.. We consider a dimensionless operator 

(6.27) 

on Lz(O,  00) @ C2 with the simple solution of the generalized eigenvalue problem 

(6.28) 

(6.29) 

Following the same pattern as in the proof of the theorem 1 we obtain the continuous 
'density of states' in the both cases ( a )  and (b )  

- = (  d p  (.A)-'- for A' > 1 
dA o for A2 < 1 

and after rescaling the statements of theorem 2 are proved. 0 
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